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ARTICLE

Case-Control Association Testing with Related Individuals:
A More Powerful Quasi-Likelihood Score Test
Timothy Thornton and Mary Sara McPeek

We consider the problem of genomewide association testing of a binary trait when some sampled individuals are related,
with known relationships. This commonly arises when families sampled for a linkage study are included in an association
study. Furthermore, power to detect association with complex traits can be increased when affected individuals with
affected relatives are sampled, because they are more likely to carry disease alleles than are randomly sampled affected
individuals. With related individuals, correlations among relatives must be taken into account, to ensure validity of the
test, and consideration of these correlations can also improve power. We provide new insight into the use of pedigree-
based weights to improve power, and we propose a novel test, the MQLS test, which, as we demonstrate, represents an
overall, and in many cases, substantial, improvement in power over previous tests, while retaining a computational
simplicity that makes it useful in genomewide association studies in arbitrary pedigrees. Other features of the MQLS are
as follows: (1) it is applicable to completely general combinations of family and case-control designs, (2) it can incorporate
both unaffected controls and controls of unknown phenotype into the same analysis, and (3) it can incorporate phenotype
data about relatives with missing genotype data. The methods are applied to data from the Genetic Analysis Workshop
14 Collaborative Study of the Genetics of Alcoholism, where the MQLS detects genomewide significant association (af-
ter Bonferroni correction) with an alcoholism-related phenotype for four different single-nucleotide polymorphisms:
tsc1177811 ( ), tsc1750530 ( ), tsc0046696 ( ), and tsc0057290 (57 57 57P p 5.9 # 10 P p 4.0 # 10 P p 4.7 # 10 P p 5.2 #

) on chromosomes 1, 16, 18, and 18, respectively. Three of these four significant associations were not detected in5710
previous studies analyzing these data.
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We focus on the problem of testing for association be-
tween a binary trait and a genetic marker when cases and/
or controls are related, with the pedigree(s) assumedknown.
An advantage in using multiplex families in association
studies is that affected individuals who have affected rel-
atives have a higher expected frequency of the alleles that
increase susceptibility for a genetic trait than do affected
individuals who do not have affected relatives. As a result,
the power to detect association is expected to increase
when affected individuals with affected relatives are in-
cluded in the study.

Family-based association tests, such as the transmission/
disequilibrium test (TDT),1 have the advantage that they
are robust to population heterogeneity. However, such
tests typically require genotype data for family members
of an affected individual. Case-control designs are less re-
strictive than family-based designs, because they can allow
but do not require genotype data for relatives of affected
individuals, and they are generally more powerful than
family-based designs.2

When related individuals are used in case-control stud-
ies, one must account for the fact that subjects who are
biologically related have correlated genotypes. One ap-
proach is to use the standard x2 statistic with a correction
factor that takes into account the pedigree information3

( ) or with a correction factor that takes into accountW 2xcorr

the conditional probability of identity-by-descent (IBD)
sharing, given both the observed genotype data and the
pedigree information (the “posterior kinship coefficient”)4,
giving a statistic that we refer to as “WSS.” Such approaches
correct the type I error but still use equal weighting of
individuals, among cases and among controls, which is
expected to be suboptimal, in terms of power, when in-
dividuals are related. As an alternative approach, a quasi-
likelihood score (WQLS) test has been proposed.3 Like the

, the WQLS accounts for the correlations among relatedW 2xcorr

individuals, to obtain the proper type I error rates. In ad-
dition, for a given alternative model, optimal weights,
depending on the pedigree information, are used in the
WQLS, in an effort to improve power. For the situation
when controls are not related to cases, a method for testing
association of a binary trait to a haplotype has been pro-
posed,5 where this method uses a similar weighting
scheme to that of the WQLS.

We analyze the strengths and weaknesses of the ,W 2xcorr

WQLS, and WSS tests, and we use this improved understand-
ing to propose a new and more powerful test, the MQLS

test. (The M in MQLS stands for “more powerful” or “mod-
ified.”) The MQLS test is more widely applicable than the
previously proposed tests, in two ways. First, it distin-
guishes between unaffected controls and controls of un-
known phenotype (i.e., individuals on whom no direct
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phenotype information is measured) and can incorporate
both into the analysis. Unaffected and unphenotyped gen-
eral-population controls are the two standard types of con-
trols in case-control studies of disease. Association tests
based on combined samples may include both types. Sam-
ple sizes of cases and of controls strongly influence the
power of the test, so including all available controls is
desirable. However, under the alternative hypothesis, in-
dividuals who are known to be unaffected have a lower
expected frequency of a predisposing allele than do indi-
viduals of unknown phenotype (when other factors such
as relatives’ phenotypes are held constant). This poses the
problem of how best to combine the two types of controls
in the analysis without compromising power. The MQLS

method provides a solution to this problem.
A second way in which the MQLS test is more widely

applicable than are the previously proposed tests is that
it incorporates phenotype data about relatives who have
missing genotype data at the marker being tested. This
information is used to optimize the weights given to rel-
atives with nonmissing genotype data at the marker being
tested, following the principle that there is enrichment
for predisposing variants in affected individuals with af-
fected relatives. This enrichment principle implies, for ex-
ample, that an affected individual with no phenotyped
relatives should be weighted differently from an affected
individual with an affected sibling and that this should
still hold true when the affected sibling happens to have
missing genotype data at the marker being tested. At the
same time, the genotypes of the two siblings are depen-
dent, so there should be downweighting of the siblings
when they are both genotyped, which does not occur
when only one is typed. The MQLS takes into account both
the enrichment principle and the effects of dependence
in setting the weights.

In addition to the differences just mentioned, we show
that, compared with the and WSS, the MQLS improvesW 2xcorr

power by providing a more efficient estimator of allele
frequency under the null hypothesis. In large pedigrees, a
further power difference between the MQLS and WSS would
theoretically arise from the fact that the WSS essentially
corrects for the presence of linkage in a family when test-
ing for association,5 whereas the MQLS allows both linkage
and association to contribute to the test statistic. A more
relevant difference between the WSS and MQLS is that the
MQLS is computationally feasible in large pedigrees, whereas
the WSS is not. Improvement of the MQLS over the WQLS is
obtained primarily by capitalizing on the property that
there is an enrichment for predisposing variants in af-
fected individuals with affected relatives. The MQLS is re-
markable in its computational simplicity and can be used
for any set of individuals, regardless of the complexity of
the relationships of the individuals.

We give a statistical argument that the MQLS should be
a powerful test: the MQLS maximizes the noncentrality pa-
rameter over a general class of linear statistics for all two-
allele (single-locus) disease models in outbred samples, as

the effect size tends to 0, where we allow environmental
effects that do not have familial correlation (see the “De-
velopment and Justification of the MQLS Test” section). We
simulate various multilocus disease models and directly
compare the type I error and the power of the MQLS, WQLS,
and tests in samples of related individuals. Since theW 2xcorr

current implementation of the WSS does not allow it to
be applied to these particular simulated data sets, we in-
stead use the true IBD-sharing information from the sim-
ulations to investigate the use of posterior kinship coef-
ficients to compute the variances of any of the case-con-
trol statistics. We find that, even if correction for linkage
is desired, the extra computation required to use posterior
kinship coefficients is generally not worthwhile in small
pedigrees and is not computationally practical in larger
pedigrees. We apply our methods to the Genetic Analysis
Workshop (GAW) 14 Collaborative Study of the Genetics
of Alcoholism (COGA) data,6 to identify regions of the ge-
nome that are associated with alcohol dependence (MIM
103780).

Methods
Association Testing with a Biallelic Marker

Suppose that we have phenotype information about a binary trait
for sampled individuals, with each individual coded as “af-n � m
fected,” “unaffected,” or “unknown.” Consider a single biallelic
marker with allele labels “0” and “1” (the extension to multiallelic
markers is given in appendix A), and suppose that the first n of
the listed individuals have nonmissing genotype data atn � m
the given marker, whereas the last m individuals have missing
genotype data at the marker. For the first n individuals, let Y p

, where the number of alleles of type 1 in1T(Y , … Y ) Y p # (1 n i 2
individual i), so the value of is 0, , or 1. The individuals1Y n � mi 2
are assumed to be ascertained with respect to phenotype, and
they may be arbitrarily related (including inbreeding), with the
pedigree(s) that specify the relationships assumed to be known.
Let p be the frequency of allele 1 in the general population, where

. Under the null hypothesis of no association between0 ! p ! 1
the given marker and the trait (and making the obvious assump-
tion that ascertainment is conditionally independent of marker
genotype, given phenotype and pedigree information), Y has mean

, where 1 is a column vector of length n with every entry equalp1
to 1. To obtain the null variance of Y, more assumptions are
required. Namely, we assume that, under the null hypothesis, (1)
there is neither linkage nor association between the given marker
and the trait and (2) the pedigree founders are drawn from a
population in Hardy-Weinberg equilibrium (HWE) for the given
marker. (Note that we do not require HWE in the founders under
the alternative model.) In that case, the null variance is given by

(see, e.g., the work of Bourgain et al.3),1Var (Y) p S p p(1 � p)F0 2
where is the kinship matrix of the nonmissing individuals,F

given by

1 � h 2f … 2f1 12 1n

2f 1 � h … 2f12 2 2nF p , (1)
_ … … _( )

2f 2f … 1 � hn1 n2 n

and hi is the inbreeding coefficient of individual i, and is thefij
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Table 1. wtest, wnull, and Var0 for , WSS, WQLS, and MQLSˆ ˆ(p 5 p ) W 2test null xcorr

Statistic wtest wnull ˆ ˆVar (p � p )0 test null

W 2xcorr 1c 1
1 1 1 1T T Tp(1 � p) ( 1 F1 � 2 1 F1 � 1 F1)c c c2 22 n nn nc c

WSS 1c 1 (See text)

WQLS
�1F 1c

�1F 1
1 T �1 T �1 �2 T �1 �1p(1 � p) [(1 F 1 ) (1 F 1) � (1 F 1) ]c c c2

MQLS
�1A � F F AN N,M M

�1F 1
1 T T �2 T �1 �1p(1 � p) [(w Fw )(w 1) � (1 F 1) ]test test test2

kinship coefficient between individuals i and j, where 1 � i � n
and .1 � j � n

Overview of the WQLS, ,WSS, and MQLS TestsW 2xcorr

To our knowledge, it has not been previously pointed out that
the case-control association test statistics WQLS, , WSS, andW 2xcorr

MQLS can all be thought of as having the common form

2ˆ ˆ( )p � ptest null

,
ˆ ˆ( )Var p � p0 test null

where

Tw Ynullp̂ pnull Tw 1null

is an estimator of allele frequency calculated under the assump-
tion of no association,

Tw Ytestp̂ ptest Tw 1test

is a contrasting estimator of allele frequency that should have a
different expectation from when there is association, andp̂null

denotes variance calculated under the assumption thatVar (7)0

the null hypothesis is true. For each of the four statistics, andwtest

are column vectors of length n, which can be written aswnull

functions of the phenotype and pedigree information.
The WQLS, , and WSS tests assume that every genotypedW 2xcorr

individual is coded as either “case” or “control,” with no partic-
ular distinction made between unaffected controls and controls
of unknown phenotype (e.g., general-population controls). Fur-
thermore, these tests ignore the phenotype information on the
additional m relatives with missing genotypes. In contrast, the
MQLS treats unaffected controls and controls of unknown pheno-
type differently and can handle samples that contain both types.
It also takes into account the phenotype data for the additional
m relatives with missing genotypes. For the WQLS, , and WSS,W 2xcorr

phenotype data are accordingly assumed to be coded as , a1c

column vector of length n with ith entry 1 if individual i is a case
and 0 if i is a control. We define as the number of casesTn p 1 1c c

among the n individuals with nonmissing genotypes. For the MQLS

test, the phenotype data are coded as A, a column vector of length
having ith entry 1 if individual i is affected,n � m

�k
1 � k

if i is unaffected, and 0 if i is of unknown phenotype. Here 0 !

is a constant that must be specified (see the “Developmentk ! 1
and Justification of the MQLS Test” section for details). Write

, where and are column vectors containingT T TA p (A ,A ) A AN M N M

the first n elements and last m elements of A, respectively, where
N and M stand for the sets of individuals with nonmissing and
missing genotypes, respectively, at the particular marker. For the
MQLS test to use the additional phenotype information from the
m individuals with missing genotype data, additional relationship
information is needed in the form of an matrix , givingn # m FN,M

the kinship coefficients between the nonmissing and missing in-
dividuals—that is, has th element equal to , whereF (i,j) 2fN,M i,n�j

is the kinship coefficient between the ith nonmissing in-fi,n�j

dividual and the jth missing individual. We write for theFN,N∪M

matrix with first n columns equal to the of equationn # (n � m) F

(1) and last m columns equal to .FN,M

Table 1 gives and for , WSS, WQLS, and MQLS, andw w W 2test null xcorr

for , WQLS, and MQLS. When the WQLS, ,ˆ ˆVar (p � p ) W W2 20 test null x xcorr corr

and MQLS statistics are calculated from data, the p in the variance
expression is estimated by . From table 1, we see thatTp̂ p w Ynull null

the weights and variances for WQLS and MQLS involve . It can�1F

be shown that is invertible provided that the sample of indi-F

viduals with nonmissing genotypes does not include both mem-
bers of any MZ twin pair (see appendix B). We have also developed
an extension of the WQLS and MQLS to the case when the genotyped
sample does include both members of one or more MZ twin pairs.
In that case, we calculate the WQLS and MQLS by coding each MZ
twin pair as a single individual, where, for the WQLS, we assign
the phenotype to be the average of the phenotype values for the
pair (so the phenotype would take value 0, 1, or if the members1

2
of the pair were both controls, both cases, or one of each, re-
spectively) and, for the MQLS, we assign the phenotype value to
be the sum of the phenotype values for the MZ twin pair (so the
phenotype would take value 0,

�2k
,

1 � k

or 2 if the members of the pair were both of unknown phenotype,
both unaffected, or both affected, respectively, and value

k
1 �

1 � k

if one is affected and the other unaffected, etc.). It turns out that
this procedure is justified by the fact that it is mathematically
equivalent to substituting the Moore-Penrose generalized inverse
(see, e.g., the work of Schott7) of in place of in the formulas�1F F

of table 1. Under regularity conditions on how behaves asFN,N∪M

, which are sufficient for a central-limit theorem to hold,n � m r �

each of the four statistics follows a x2 distribution with 1 df as-
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ymptotically under the null hypothesis. A previous simulation
study documented the accuracy of the x2 approximation for type
I error of and WQLS.

3W 2xcorr

For both the and WSS, is the sample mean based onˆW p2x testcorr

cases and is the sample mean based on everyone. The dis-p̂null

tinction between the two statistics is in the variance calculation.
Previous work4 gives the variance calculation for WSS, for the case
of outbred individuals, as a function of variances and covariances
of genotype indicators for sampled individuals. The variances of
the indicators are then calculated as a function of genotype prob-
abilities and are valid under violations of HWE. However, the
covariances are calculated with use of an ITO method that is valid
only under HWE and with use of posterior IBD probabilities that
are also calculated assuming HWE. Arguably the most substantial
distinction between the variance calculations for and WSSW 2xcorr

is in the use of so-called prior versus posterior kinship coefficients
or, equivalently, the probability of IBD sharing for a pair based
on the pedigree alone versus conditional on genotype data as
well as on the pedigree. When the data are in HWE and all geno-
typed individuals are outbred, the variance expression for WSS is
the same as that for in table 1, except that is replaced byW F2xcorr

, where has (i,j)th element equal toF Fposterior posterior

y (1)ij
y (2) � ,ij 2

where y (k) p P(i and j share k alleles IBD at the givenij

. We callmarkerFall genotype and pedigree information) Fposterior

the posterior kinship matrix, and, in the “Assessment of Use of
versus in Variance Calculations” section, we considerF Fposterior

the effect on power of the use of versus in the varianceF Fposterior

calculations for each of the statistics.
For WQLS, is the best linear unbiased estimator (BLUE)8p̂null

based on everyone, and, in the special situation when the controls
are not related to the cases, is the BLUE based on cases. Thep̂test

original presentation3 of the WQLS was as a quasi-likelihood score
statistic based on the mean model

TE(YF1 ) p m p (m ,…m ,…m ) ,c 1 i N

with —that is,m p p1 � r1c

p � r if i is a case
m p (2)i { p if i is a control ,

where . Under the null hypothesis of no association,0 ! p � r ! 1
. An equivalent expression3 for WQLS isr p 0

T �1 T �1ˆ ˆˆW p (Y � m ) S 1 1 S 1[QLS 0 0 c c 0 c

�1
T �1 T �1 �1 T �1 T �1ˆ ˆ ˆ ˆ ˆ�1 S 1(1 S 1) 1 S 1 1 S (Y � m ) , (3)]c 0 0 0 c c 0 0

where is the quasi-likelihood estimatorT �1 �1 T �1p̂ p (1 F 1) 1 F Ynull

of p when , is the covariance matrix evaluated atˆr p 0 S S r p0

and —that is, —and is the mean1ˆˆ ˆ ˆ ˆ0 p p p S p p (1 � p )F mnull 0 null null 02
vector m evaluated at and —that is, . Theˆ ˆˆr p 0 p p p m p p 1null 0 null

WQLS test has been shown3 to have certain optimality properties
based on this model.

For the MQLS, is the BLUE based on everyone. In the specialp̂null

case of no missing genotype data at the marker, for the MQLSp̂test

is calculated by taking a weighted average of the elements of Y

in which each affected individual’s Y value gets a weight of 1,
each unaffected individual’s Y value gets a weight of

�k
,

1 � k

and Y values of individuals of unknown phenotype get weight
of 0. When some individuals have missing genotype data, then

, the weight of the ith typed individual’s Y value in , hasˆw ptest,i test

an additional term added on, whose value is a function of the
phenotypes of individuals with missing genotype data that occur
in the same pedigree with individual i. In that case, w ptest,i

, where f is the pedigree containing individual�1A � (F F A )i f f,N,M f,M i

i, and , , and are, respectively, , , and , re-�1 �1F F A F F Af f,N,M f,M N,M M

stricted to members of f. In the “Development and Justification
of the MQLS Test” section, we justify the form of the MQLS, given
in table 1, on theoretical grounds, and, in the “Power Comparison
of , WQLS, and MQLS” and the “Assessment of Use of versusW F2xcorr

in Variance Calculations” sections, we demonstrate thatFposterior

it generally improves power over previously proposed tests.

Development and Justification of the MQLS Test

The model on which WQLS is based (eq. [2]) has the advantage of
being simple and intuitive, and it works well in samples of un-
related individuals. However, when the sample consists of related
individuals and the trait is complex, this model does not capture
certain features of allele-frequency differences associated with a
genetic trait. Situations in which the model in equation (2) would
be expected to hold more or less exactly, even in a sample of
related individuals, include (1) testing for an allele-frequency dif-
ference between two distinct populations (e.g., Swedes and Jap-
anese) without admixture and (2) testing for association with a
trait within a single population when the true genetic model is
a rare, fully penetrant dominant allele. In such cases, the WQLS

enjoys certain optimality properties,3 which can be verified by
simulation (see the “Results” section). One might hope that the
simple model would be robust enough to maintain power with
complex traits, but we find that power can be improved substan-
tially by modifying the model while still retaining the compu-
tational simplicity of the original method.

The motivation for development of the MQLS is to improve the
power of the quasi-likelihood score test WQLS by explicitly taking
into account the fact that affected individuals who have affected
relatives have a higher expected frequency of the alleles that in-
crease susceptibility for a genetic trait than do individuals who
do not have affected relatives. The simple model in equation (2)
ignores this fact. Furthermore, when case individual i and control
individual j are related, the model in equation (2) specifies that

, regardless of how closely related i and j are,E(Y � Y ) p ri j

whereas, for example, if i and j were MZ twins, then, in reality,
, and, more generally, the expected difference in Y val-Y � Y p 0i j

ues between two individuals depends on their relationship as well
as on their phenotypes.

For the MQLS, we develop a new mean model that is a function
of the relationships and the phenotypes of all individualsn � m
and is as follows: , withTE(YFA) p m p (m , …m , …m ) m p p1 �1 i n

—that is,rF AN,N∪M

n�m

m p p � r 2f A , (4)�i ij j
jp1
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where we constrain for . For a0 ! p � r(F A) ! 1 i p 1, … ,nN,N∪M i

better understanding of this mean model, let us consider, for
example, a case-control study in which all of the individuals in
the study are outbred. If a sampled individual i has no relatives
in the study or if the phenotypes of all of i’s relatives are un-
known, then, under the model of equation (4), i’s expected allele
frequency is if i is of unknown phenotype, if im p p m p p � ri i

is affected, and

k
m p p � ri ( )1 � k

if i is unaffected. For each affected sibling i has, is added to1 r2
the baseline value of , whereas, for each unaffected sibling,mi

1 k
� r( )2 1 � k

is added. For example, if i is affected and has three affected sib-
lings and no other relatives of known phenotype in the study,
then . Note that, under model (4), MZ twins would5

m p p � ri 2
always have the same expected allele frequency, even if one is a
case and the other is a control.

The theoretical justification for this new mean model is as fol-
lows: assume, for the moment, that the trait is caused by the
marker according to an arbitrary two-allele (single-locus) disease
model, in which we allow environmental effects that do not have
familial correlation. This model is specified by the population-
allele frequency p and the penetrances of the three possible ge-
notypes. Set the constant k (used in the calculation of A) to be

, the population prevalence of the trait. Consider an arbitraryKp

set of possibly related outbred individuals, and calculate the true
value, under the model, of the expected allele frequency in in-
dividual i conditional on all available phenotypes of i and i’s
relatives, , for any individual i in the sample. If we∗m p E(Y FA)i i

consider the ratio

∗m � pi ,∗m � pa

where a is any affected individual with no phenotyped relatives,
then, as the effect size (or differences among penetrance proba-
bilities) tend to zero, this ratio tends to (see appendixn�m� 2f Aij jjp1

C for the proof). Thus, the mean model in equation (4) is as-
ymptotically the correct one for any two-allele disease model as
the effect size goes to zero. Moreover, if the individuals are inbred,
then the model is asymptotically correct for an additive or mul-
tiplicative, two-allele disease model as the effect size goes to zero
(but not for a general, two-allele disease model in the inbred case).
Although the assumptions under which this mean model is de-
rived are somewhat simplistic, the model captures the important
feature that individuals with affected relatives are likely to be
enriched for the predisposing allele relative to individuals with-
out affected relatives.

The MQLS statistic given in table 1 is derived as the quasi-like-
lihood score statistic based on the model in equation (4). This is
obtained by substituting in place of in equation (3).F A 1N,N∪M c

The resulting formula for MQLS is

�2 T �1 Tˆ ˆ ˆM p j (Y � m ) aG a (Y � m ) , (5)QLS 0 0 0

where ,�1a p A � F F AN N,M M

T T 2 T �1 T �1G p a (FA � F A ) � (1 a) (1 F 1 ) , (6)N N,M M

, , and .1�2 �1 T �1 �1 T �1ˆ ˆ ˆ ˆˆm̂ p p 1 j p [ p (1 � p )] p p (1 F 1) 1 F Y0 null 0 null null null2
Following the same reasoning3 as for the WQLS, the MQLS has max-
imal noncentrality parameter, against the alternative specified in
equation (4), among a general class of linear statistics of the form

, where and where 0 is a col-T �1 TW p S [Var (S)] S S p V Y V ( 00

umn vector of 0’s of length n. Note that , WQLS, and MQLSW 2xcorr

are all of this form. As a result, under suitable regularity condi-
tions, which are not discussed here, the MQLS would be asymp-
totically locally most powerful against the alternative specified
in equation (4). Simulation studies are undertaken in the “Re-
sults” section, to assess the usefulness of this test for complex
traits, where two-allele models are not expected to hold.

To use the MQLS test, a value for the constant k must be specified.
We emphasize that the test will be valid for any value of k sat-
isfying . The value of k affects the power of the test, and,0 ! k ! 1
under a two-allele model, for outbred individuals, optimal power
is attained when k is the population prevalence of the trait. For
complex traits, we recommend setting k equal to an estimate of
the population prevalence from previous studies or registry data
from the population. In the “Results” section, we demonstrate,
through simulation, that power is in fact quite robust to misspe-
cification of k.

MQLS Power-Improvement Diagnostic

We propose a method that uses only pedigree information and
phenotype data (without genotype data) to determine whether
the analyses using , WQLS, and MQLS would be expected toW 2xcorr

give similar or dissimilar results. (If they are expected to give
dissimilar results, then, in most cases, the MQLS is expected to
have higher power.) One possible advantage of applying this di-
agnostic could be to avoid having to correct association P values
for having performed multiple analyses unnecessarily, in the case
when the results are predicted to be similar on the basis of the
diagnostic. Because the diagnostic is based only on phenotype
and pedigree information, and not on genotype data, such an
approach does not create any bias in the results.

The idea is to calculate the weights assigned to the observations
for each of the statistics and compare them. For the , theW 2xcorr

weight of an observation depends only on the individual’s case-
control status. In contrast, the weights can vary among cases and
among controls in WQLS and MQLS, depending on the relationship
configurations, as well as on the phenotypes of relatives. The total
weights vary slightly from locus to locus, depending on missing
data patterns. However, on the basis of the study design, weights
for the genotyped individuals could be computed to get an idea
of how different the analyses are likely to be under WQLS, MQLS,
and . Details of the power improvement diagnostic are givenW 2xcorr

in appendix D, where we find that, to compare the weightsW 2xcorr

with the MQLS weights, we need only calculate the coefficients of
variation of total MQLS weights among cases and total MQLS weights
among controls. If these values are close to zero, then the MQLS

test results should be similar to the test results. The sameW 2xcorr

principle holds for comparison of weights with WQLSW 2xcorr

weights. Large differences in association-testing results between
the and either the MQLS or the WQLS tests would be expectedW 2xcorr

to occur when one or both of the relevant coefficients of variation
are far from zero. Our experience, in the context of our simula-
tions, is that a coefficient of variation of ∼1 or more in absolute
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value for the cases and/or controls will result in an improvement
in power for the MQLS over the .W 2xcorr

Use of Prior versus Posterior Kinship Coefficients

Kinship coefficients (and, for an inbred population, inbreeding
coefficients) are used in two different ways in the construction
of the four statistics: , WSS, WQLS, and MQLS. First, kinshipW 2xcorr

coefficients can be used in the calculation of the total weight
vector, V, for each statistic (as they are in WQLS and MQLS but not
in and WSS). Second, they are used in the calculation of theW 2xcorr

variance term for each statistic. TheT ˆ ˆVar (V Y) p Var (p � p )0 0 test null

question arises3,5 as to whether it is preferable to use the uncon-
ditional (i.e., prior) kinship coefficients,3 given by , or the pos-F

terior kinship coefficients, , which are the conditionalFposterior

probabilities of IBD sharing given both the observed genotype
data and the pedigree information,4 keeping in mind that isF

vastly easier to compute than . In fact, we generally cautionFposterior

against the use of in the calculation of V for WQLS andFposterior

MQLS. To understand why, first consider the simpler problem of
allele-frequency estimation from a sample of related individuals.
The BLUE for that problem8 is the same as

T �1 �1 T �1p̂ p (1 F 1) 1 F Y .null

When is substituted for in the formula for , theˆF F pposterior null

resulting estimator is, in general, biased and even inconsistent as
when there is partial IBD information. This occurs becausen r �

the random variables and Y are, in general, dependent.Fposterior

(Note that, in principle, these difficulties could be avoided in
certain situations when is estimated in such a way thatFposterior

; for example, if the true IBD sharing is knownE(YFF ) p EYposterior

or if it is estimated from markers not in linkage disequilibrium
[LD] with the marker of interest.) From these considerations, it
seems clear that, if is used in the calculation of V for theFposterior

WQLS and MQLS, the resulting test statistic could be badly behaved.
This might explain the difficulties encountered in previous work,5

which considered the use of in the calculation of V for aFposterior

haplotype-based method with a weighting scheme similar to that
of the WQLS.

There remains the possibility of using in the calculationFposterior

of the variance term. Intuitively, this would be expected to correct
the statistic for the presence of linkage.5 In a context in which
one would be willing to detect either linkage or association or a
combination of the two, then the use of instead of inF Fposterior

the variance calculation would be expected to result in lower
power, as well as more onerous computation. However, in a con-
text in which linkage has already been established and one wishes
to correct for it in testing for association, the use of insteadFposterior

of in the variance calculation would be expected to result inF

better control of type I error. In the “Assessment of Use of versusF

in Variance Calculations” section, we describe simulationsFposterior

to test the validity of this intuition.
To use in the variance calculation for , one needF W 2posterior xcorr

only replace with in the variance formula in table 1.F Fposterior

We call the resulting statistic , where “COND” refers toCONDW 2x

conditional kinship coefficients. To calculate and ,COND CONDW MQLS QLS

we replace the corresponding variance formulas in table 1 with

1 Tp(1 � p)[(w F w )test posterior test2

T �2 T �1#(w 1) � 2(w F F 1)test test posterior

T �1 T �1 �1#(w 1) (1 F 1)test

T �1 �1 T �1 �2�(1 F F F 1)(1 F 1) ] ,posterior

where is defined differently for WQLS and MQLS, with the def-wtest

initions given in table 1. Software such as Merlin9 can be used to
calculate in small-to-moderate–sized pedigrees.Fposterior

GAW 14 COGA Data

We analyze a COGA data set6 that was previously analyzed in the
Genetics Analysis Workshop (GAW) 14. There are a total of 1,614
individuals from 143 pedigrees, with each pedigree containing at
least three affected individuals. We include in our analysis only
those individuals who are coded as “white, non-Hispanic.” We
designate as cases those individuals who are affected with ALDX1
or who have symptoms of ALDX1, where ALDX1 is defined to
be DSM-III-R alcohol dependence with the Feighner Alc Definite
phenotype. By these criteria, there are 830 cases with available
SNP data. We designate as “unaffected controls” those individuals
who are labeled as “pure unaffected,” and we designate as “con-
trols of unknown phenotype” those individuals who are labeled
as “never drank alcohol.” Among individuals with available SNP
data, these criteria result in 187 unaffected controls and 13 un-
known controls. Note that the MQLS makes a distinction between
the two control types, whereas the and WQLS do not. TheW 2xcorr

data set includes 10,810 autosomal SNPs. We exclude 403 SNPs
that are not polymorphic (minor-allele frequency !0.01). We an-
alyze the remaining 10,407 SNPs using the , WQLS, and MQLSW 2xcorr

tests. We could not use the WSS software package to analyze these
data because, at the time of our analysis, to the best of our knowl-
edge, there was no implementation available that would handle
the situation in which controls are related to cases (although, in
principle, it could be extended to that situation).

Results
Simulation Studies

We perform simulation studies to (1) assess the type I error
of the MQLS; (2) compare power of the , WQLS, andW 2xcorr

MQLS; (3) assess the practical impact of the use of versusF

in the variance calculations for the statistics; andFposterior

(4) assess the robustness of power of MQLS to the choice of
the parameter k. For each simulation described below,
5,000 replicates were performed.

We consider three different study designs. In the first,
affected and unaffected individuals from 60 outbred, three-
generation pedigrees are sampled. Each pedigree has a to-
tal of 16 individuals, related as in figure 1, with the pattern
of affected and unaffected individuals varying randomly
according to one of the trait models described in the next
paragraph. Pedigrees are sampled conditional on obtain-
ing exactly 20 pedigrees with 4 affected individuals, 20
with 5, and 20 with 6. In each sampled pedigree, pheno-
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Figure 1. Example pedigree for study design 1 consisting of 60
outbred, three-generation pedigrees, where the overall structure
of each pedigree is as depicted, but the pattern of affected and
unaffected individuals in each pedigree varies randomly according
to the specified model and ascertainment scheme.

Table 2. Allele Frequencies and Penetrance Parameters for
Simulation Models

Model

Allele
Frequencies Penetrance Parameters

Kp Ks lsp1 p2 p3 f1 f2 f3 f4

I-a .1 .5 … .2 .05 … … .071 .087 1.224
I-b .5 .4 … .18 .07 … … .122 .132 1.077
I-c .4 .25 … .4 .2 … … .256 .268 1.047
II-a .3 .2 … .5 .45 .32 .01 .042 .135 3.198
III-a .1 .2 .3 .4 .03 … … .078 .156 2.001
III-b .05 .4 .2 .5 .01 … … .047 .196 4.209
IV-a .05 … … 1 .05 … … .143 .417 2.926
V-a .1 .3 … .6 .15 … … .194 .232 1.202

NOTE.—I, II, III, IV, or V indicates the model type, and the letter (a,
b, or c) that follows the model type is used to distinguish among the
different settings of allele frequencies and penetrance parameters used
for that model type. is the frequency of allele 1 at SNP i, is thep Ki p

population prevalence of the disease, is the probability that a non-Ks

inbred individual is affected, given that the individual has a sibling who
is affected, and is the sibling risk ratio.Ksl ps Kp

types for all 16 individuals are observed. For each indi-
vidual in a sampled pedigree, the individual’s genotypes
are observed if and only if at least 30% of the individual’s
siblings, parents, and offspring in the sampled pedigree
are affected. The second study design is similar to the first,
with two differences: (1) an additional 200 unrelated, un-
affected controls are included in the study; and (2) for
each individual in a sampled pedigree, the individual’s
genotypes are observed if and only if at least half of the
individual’s siblings, parents, and offspring in the sampled
pedigree are affected. In the third study design, individuals
from three extended pedigrees are sampled, with each
pedigree consisting of 154 individuals over five genera-
tions. The pedigrees are sampled conditional on having
at least 50 affected individuals. In each sampled pedigree,
phenotypes for all 154 individuals are observed. For each
individual in a sampled pedigree, the individual’s geno-
types are observed if and only if at least half of the in-
dividual’s siblings, parents, and offspring in the sampled
pedigree are affected.

We consider four different classes of multigene trait
models.10 Model I has two unlinked causal SNPs, with epis-
tasis between them and both of them acting dominantly.
In model I, the frequencies of allele 1 at SNPs 1 and 2 are

and , respectively. Individuals with at least one copyp p1 2

of allele 1 at SNP 1 and at least one copy of allele 1 at SNP
2 have a penetrance of . All other individuals have af1

penetrance of . We consider three different parameterf ! f2 1

settings for model I, which are listed as models I-a, I-b,
and I-c in table 2. Model II also consists of two unlinked
causal SNPs with epistasis between them, with SNP 1 act-
ing recessively and SNP 2 following a general two-allele
model. There are four penetrance parameters for this
model, with . Individuals with two copies off 1 f 1 f 1 f1 2 3 4

allele 1 at SNP 1 and two copies of allele 1 at SNP 2 have
a penetrance of . Individuals with two copies of allele 1f1

at SNP 1 and one copy of allele 1 at SNP 2 have a pene-
trance of . Individuals with two copies of allele 1 at SNPf2

1 and no copies of allele 1 at SNP 2 have a penetrance of

. All other individuals have a penetrance of . We con-f f3 4

sider one parameter setting for this class of model, which
is listed as model II-a in table 2. Model III has three un-
linked causal SNPs with epistasis between them and with
each SNP acting dominantly. Individuals with at least one
copy of allele 1 at SNP 1 and at least one copy of allele 1
at SNP 2 and/or SNP 3 have a penetrance of . All otherf1

individuals have a penetrance of . We consider twof ! f2 1

different parameter settings for this class of model, which
are listed as models III-a and III-b in table 2. Model V is
the same as model I except that, in model V, the two causal
SNPs are tightly linked and in linkage equilibrium,
whereas, in model I, the two causal SNPs are unlinked and
in linkage equilibrium. We consider one parameter setting
for model V, which is listed as model V-a in table 2. In
addition to the multigene models, we also consider a sin-
gle-gene dominant model, model IV, in which individuals
with at least one copy of allele 1 at SNP 1 have a pene-
trance of and all other individuals have a penetrance off1

. We consider one parameter setting for model IV,f ! f2 1

which is listed as model IV-a in table 2 and which rep-
resents a rare dominant trait that is almost fully penetrant.
In addition to the allele frequencies and penetrance pa-
rameters for each model, table 2 contains the resulting
population prevalence , prevalence conditioned onK Kp s

having an affected sibling, and the sibling risk ratio

Ks
l p ;s Kp

these last 3 are calculated in outbreds. A broad range of
models were chosen for our simulation studies: from highly
penetrant disease models to disease models with low pen-
etrance and models with high heritability to models with
low heritability.



328 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

Table 3. Empirical Type I Error of the MQLS

Test, Based on 5,000 Simulated Replicates

p Ncases Ncontrols

Empirical Type I Error (SE)
with Nominal Type I Error of

.05 .01

.4 77.2 405.5 .050 (.003) .011 (.0015)

.2 77.0 405.9 .052 (.003) .010 (.0014)

.05 76.9 405.4 .053 (.003) .010 (.0014)

NOTE.—Association is tested with a biallelic marker
having minor-allele frequency p. Ncases is the average
number of cases sampled. Ncontrols is the average number
of controls sampled.

Table 4. Example in Which
WQLS Is More Powerful than

and MQLSW 2xcorr

Statistic
Estimated Power

(SE)

WQLS .47 (.007)
W 2xcorr

.37 (.007)
MQLS .36 (.007)

NOTE.—The tested SNP is as-
sociated ( ) with the causal′D p .2
SNP for a rare, fully penetrant
dominant trait (model IV-a).
Power is based on 5,000 simu-
lated replicates.

Assessment of Type I Error of MQLS

Previous simulation studies3 verified that the use of the x2

approximations to the null distributions of and WQLSW 2xcorr

give the appropriate type I error for the tests. We perform
a similar verification for the MQLS by simulating under the
null hypothesis of no association and no linkage. We com-
pare the proportion of simulations in which the statistic
exceeds the th quantile of the x2 distribution to the(1 � a)
nominal type I error level a, for and .05. Simu-a p .01
lations are performed on the basis of the second study
design, which consists of individuals from 60 moderate-
sized pedigrees plus 200 unrelated unaffected individuals.
The phenotype is simulated from model I-a (table 2). We
test at an unlinked, unassociated SNP with three different
allele-frequency settings, which are given in table 3.

Table 3 gives the empirical type I error of the MQLS, es-
timated from 5,000 simulations, for nominal levels .05
and .01. For each simulation scenario, the empirical type
I error is not significantly different from the nominal.
These results verify that the use of the x2 approximation
results in an accurate assessment of significance for the
MQLS.

Power Comparison of , WQLS, and MQLSW 2xcorr

To compare the power of , WQLS, and MQLS, we performW 2xcorr

simulations on the basis of the second study design, which
consists of individuals from 60 moderate-sized pedigrees
plus 200 unrelated unaffected individuals. Five thousand
replicates from each of models I-a, I-b, I-c, II-a, III-a, and
III-b are simulated. The test is performed at SNP 2 for each
model, with the significance threshold set to .05.

Estimated power with the SE for the , WQLS, andW 2xcorr

MQLS tests is given in figure 2. Recall that the numbers of
cases and controls in each replicate are randomly deter-
mined. The average number of cases for a given simulation
setting has a range of 70.2–121.6, and the average number
of controls has a range of 390.2–417.4. The average co-
efficient of variation for the total weights of cases in the
MQLS has a range of 0.3–0.4, and, for controls, it has a range
from �2.6 to �1.6. Because the average coefficient of var-
iation of total weights of controls is 11 in absolute value
for the MQLS for every model considered, we expect an im-
provement in power of the MQLS over the . As shownW 2xcorr

in figure 2, the MQLS is more powerful than both the
and WQLS in our simulation studies. The increase inW 2xcorr

power for the MQLS is substantial (a difference in power of
at least 0.20) for models I-a, I-b, and III-a. Our theoretical
results indicate that the MQLS should be powerful for two-
allele disease models as effect size tends to zero. Our sim-
ulation studies indicate that, in fact, the MQLS performs
well for a range of more-complex disease models.

In the “Development and Justification of the MQLS Test”
section, we note that an example in which the WQLS has
certain theoretical optimality properties is the case of a
rare, fully penetrant dominant trait. To demonstrate by
simulation that there can be cases in which the WQLS has
higher power than the other statistics, we perform sim-
ulations that are based on the first study design (60 mod-
erate-sized pedigrees) with the phenotype simulated from
model IV-a, which approximates a rare, fully penetrant
dominant. We perform the tests at the causal SNP and also
at a tightly linked SNP that has allele frequency 0.5 and
is associated with the causal SNP, with . When the′D p .2
causal SNP was tested, all three tests had power close to
1 (results not shown). Table 4 compares the power of the
three tests when they are performed at the tightly linked
SNP that has allele frequency 0.5 and is associated with
the causal SNP with . As expected, WQLS has higher′D p .2
power than the other statistics in the case of a rare, fully
penetrant dominant. This is because the conditional ex-
pected frequency of the allele in an individual given the
phenotype information on everyone depends on only
whether the individual is affected or unaffected, so the
model on which the WQLS is based holds.

Assessment of Use of versus in VarianceF Fposterior

Calculations

We assess by simulation two predicted consequences of
the use of in place of in the variance calculationsF Fposterior

of the statistics. To avoid the extra burden of calculating
, we instead use the true IBD-sharing informationFposterior

in place of . This corresponds to the best-case sce-Fposterior

nario for the use of , in which the markers provideFposterior

complete IBD information.
The first predicted consequence is that use of inFposterior
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Figure 2. Estimated power with SE for the WQLS, , and MQLS tests, on the basis of 5,000 simulated realizations for each of sixW 2xcorr

different models.

place of in the variance calculations would result inF

lower power in a context in which one would be willing
to detect either linkage or association or a combination
of the two; that is, when the null hypothesis is no asso-
ciation and no linkage. To test this, we simulate on the
basis of the first (60 moderate-sized pedigrees) and third
(three extended pedigrees) study designs, with the phe-
notype simulated from model V-a. We perform the tests
at SNP 2, which is both linked and associated with the
phenotype.

The second predicted consequence is that use of
would give better control of type I error in theFposterior

context in which linkage has already been established and
one wishes to correct for it in testing for association; that
is, when the null hypothesis is no association. To test this,
we use the same simulation scenario as for the first pre-
dicted consequence except that, instead of testing at SNP

2, which is both linked and associated with the pheno-
type, we tested at SNP 3, with allele frequency 0.5, which
is tightly linked to both SNPs 1 and 2 but is not associated
with either of them.

Table 5 demonstrates that, for moderate-size pedigrees,
there is almost no difference between the use of andF

in the variance calculations for the statistics. ThisFposterior

lack of difference between the two approaches holds for
a SNP that is linked but not associated, as well as for a
SNP that is both linked and associated. This is good news,
because the calculation of is vastly simpler than that ofF

.Fposterior

For extended pedigrees, on the other hand, table 5 dem-
onstrates that our predictions were correct—namely, that
use of in place of in the variance calculationsF Fposterior

results in (1) lower power to test the joint null hypothesis
of no association and no linkage and (2) better control of
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Table 5. Power Comparison for the Use of versus in Variance Calculations, forF Fposterior

Simulations under Model V-a, When Testing at a Tightly Linked Marker, Based on 5,000 Simulated
Replicates

Setting Associated
Pedigree

Size

Estimated Power (SE)

WQLS
CONDWQLS W 2xcorr

CONDW 2xcorr
MQLS

CONDMQLS

1 Yes Large .78 (.006) .64 (.007) .84 (.005) .73 (.006) .96 (.003) .88 (.005)
2 Yes Moderate .86 (.005) .84 (.005) .94 (.003) .93 (.004) .96 (.003) .96 (.003)
3 No Large .13 (.005) .05 (.003) .11 (.004) .05 (.003) .14 (.005) .05 (.003)
4 No Moderate .06 (.003) .05 (.003) .05 (.003) .05 (.003) .05 (.003) .05 (.003)

NOTE.— , , and are the statistics that use for the variance calculation. WQLS, , and MQLS
COND COND CONDW W M F W2 2QLS x QLS posterior xcorr corr

are the statistics that use for the variance calculation. “Large” refers to the study design consisting of threeF

extended pedigrees, each containing 154 individuals. “Moderate” refers to the study design consisting of 60 pedigrees,
each containing 16 individuals. The average numbers of cases and controls for the three large extended pedigrees
study are 70.4 and 106.3, respectively. The average numbers of cases and controls for the 60 moderate-sized pedigrees
study are 164.9 and 360.5, respectively.

type I error to test the null hypothesis of no association
in the presence of linkage. This is because, when is usedF

in the variance calculation, linkage is allowed to contrib-
ute to the signal, whereas, when is used in theFposterior

variance calculation, linkage is not allowed to contribute
to the signal. In extended pedigrees, the calculation of

can present substantial difficulties. Particularly inFposterior

the context of whole-genome association, use of Fposterior

might be unfeasible in extended pedigrees, and, as we
have seen, it makes almost no difference in moderate-size
pedigrees. Therefore, as a practical matter, it seems to make
sense to use , with the understanding that, in extendedF

pedigrees, this provides a test of the joint null hypothesis
of no association and no linkage.

Robustness of Power of MQLS to Choice of k

The MQLS test is valid for any choice of the parameter k.
In outbreds, when k is equal to the population prevalence
of the disease, we have argued that the MQLS is asymptot-
ically locally most powerful for all two-allele disease mod-
els as the effect size tends to zero. In reality, the trait will
usually be complex, and the prevalence will be estimated.
To see how the power of the MQLS test is affected by dif-
ferent choices of k, we perform a simulation study on the
basis of the second study design, with the phenotype sim-
ulated from model III-a. For model III-a, the true popu-
lation prevalence is . We perform the MQLS testK p .078p

with different settings of the parameter k, which are given
in table 6.

Table 6 gives power results for the MQLS test for values
for k ranging from one-quarter of the true value to 6 times
the true value. In this case, choosing k to be within a factor
of 3 or 4 of the population prevalence appears to give high
power, suggesting that the procedure is quite robust to
choice of k.

GAW 14 COGA Data

The National Institute on Alcohol Abuse and Alcoholism
has estimated11 that the prevalence of alcohol dependence
in the United States is ∼5%. For the MQLS, we accordingly

set in the analysis. The average coefficient of var-k p 0.05
iation of the weights given by the WQLS for the cases is
1.568 and for the controls is �0.655. For the MQLS, they
are 2.510 for the cases and �0.668 for the controls. The
fact that the coefficients of variation for the cases are 11
for both the MQLS and WQLS suggests that these tests have
the potential to give different results from those given by
the test, and, in particular, we might expect thatW 2xcorr

there is some advantage to be gained by applying the MQLS.
Table 7 gives the results of the analyses for those SNPs for
which at least one of the tests has a nominal P ! 4.0 #

. For 13 of these 15 SNPs, the MQLS test has the smallest�510
P value among the three tests used. After Bonferroni cor-
rection to adjust for three different tests of association
at each of 10,407 SNPs, the MQLS test is significant at the
5% level for four SNPs: tsc1177811 on chromosome 1
( uncorrected; .018 corrected), tsc1750530�7P p 5.9 # 10
on chromosome 16 ( uncorrected; .012 cor-�7P p 4.0 # 10
rected), tsc0046696 on chromosome 18 ( �7P p 4.7 # 10
uncorrected; .015 corrected), and tsc0057290 on chromo-
some 18 ( uncorrected; .016 corrected).�7P p 5.2 # 10
Note that the two significant SNPs on chromosome 18 are
71 cM apart. The test is significant at the 5% levelW 2xcorr

for an additional SNP, tsc0571038 on chromosome 11
( uncorrected; .019 corrected).�7P p 6.2 # 10

Three of the five significant SNPs in table 7 are near
genes: tsc1750530 is 3 kb from the gene encoding HEAT
repeat containing 3 (HEATR3 [Affymetrix; EntrezGene]),
located at 16q12.1. The same SNP is also 25 kb from the
gene encoding transmembrane protein 188 (TMEM188
[Affymetrix; EntrezGene]), located at 16q12.1. SNP tsc-
0046696 is 238 kb from the gene encoding F-box protein
15 (FBXO15 [MIM 609093; Affymetrix; EntrezGene]), lo-
cated at 18q22.3. The other significant SNP on chromo-
some 18, tsc0057290, is 411 kb from the gene encoding
VAMP (vesicle-associated membrane protein)–associated
protein A (VAPA [MIM 605703; Affymetrix; EntrezGene]),
33 kDa, located at 18p11.22. To our knowledge, none of
these genes are obvious candidates. The two significant
SNPs that are not in close proximity to any known genes,
tsc1177811 and tsc0571038, are located at 1p31.1 and
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Table 6. Robustness of MQLS to
Misspecification of Kp

Assumed Kp

Multiple of
True Kp Estimated Power (SE)

.019 1
4

.74 (.006)

.026 1
3

.75 (.006)

.039 1
2

.74 (.006)

.078 1 .76 (.006)

.156 2 .76 (.006)

.234 3 .75 (.006)

.312 4 .72 (.006)

.390 5 .63 (.007)

.468 6 .43 (.007)

NOTE.—Simulation model is III-a, given in table 2.

11q21, respectively (Affymetrix). Among the other SNPs
in the table, two are located in or near genes of potential
interest: (1) tsc1687605 is in the 3′ UTR of the gene that
encodes cytochrome P450, family 2, subfamily C, polypep-
tide 18 (CYP2C18 [MIM 601131; Affymetrix; EntrezGene])
located at 10q24—CYP2C18 is a member of the CYP2C
subfamily of P450 enzymes that is involved with drug
metabolism (EntrezGene; OMIM); and (2) SNP tsc0768481
is in the same cytogenetic region (13q14-q21) as the gene
that encodes 5-hydroxytryptamine receptor 2A (HTR2A
[MIM 182135; Affymetrix; EntrezGene]). There is evidence
that HTR2A is associated with alcohol dependence.12

Three previous analyses13–15 of these data used the ALDX1
phenotype and performed family-based association tests
using FBAT.16 When only white individuals were analyzed,
no SNPs were significant at the 5% level with use of FBAT
with Bonferroni correction.13 When all individuals were
analyzed, three SNPs were significant after Bonferroni cor-
rection,14 only one of which (tsc1750530 on chromosome
16) is in the set of five SNPs we detect. These SNPs and
their P values were reported14 as tsc0515272 on chromo-
some 3 ( uncorrected), tsc0029429 on chro-�7P p 3.8 # 10
mosome 9 ( uncorrected), and tsc1750530�8P p 2.0 # 10
on chromosome 16 ( uncorrected). False-dis-�7P p 4.5 # 10
covery rates for these SNPs are reported15 as .0270, .0019,
and .0094, respectively. The corresponding uncorrected P
values for these SNPs by the MQLS are .058, .061, and

, respectively. Note that the MQLS detected four�74.0 # 10
significant SNPs (and the detected a fifth significantW 2xcorr

SNP) with a smaller sample than that used by the FBAT
to detect three significant SNPs. This indicates that the
MQLS is a powerful test that provides additional results
complementary to those provided by FBAT.

Analysis of 10,407 SNPs with three tests (MQLS, WQLS, and
) took ∼35 minutes on a Pentium 4 3-GHz machineW 2xcorr

with 1 GB RAM. The calculations should scale linearly with
the number of SNPs. We have not made serious attempts
to optimize the code, so this time could presumably be
improved. The slow step is the Cholesky decomposition7

of F, which would need to be performed only once if, for

every SNP, the same individuals had missing genotype data.
However, this is generally not the case, so, in our imple-
mentation, the Cholesky decomposition is recomputed
for every SNP.

Discussion

Despite major advances in high-density genome scans,
disappointing results in the mapping of many common
diseases illustrate the need for more-powerful methods for
detection of susceptibility loci. We specifically address the
problem of genomewide association analysis of binary
traits when some individuals in the sample are related
with known kinship. This arises naturally, for instance,
when families sampled for a linkage study are included in
an association study. This can be desirable, because it is
expected that affected individuals from multiplex families
would have a higher expected frequency of the alleles that
increase susceptibility for a genetic trait than would af-
fected individuals who do not have affected relatives. As
a result, the power to detect association is expected to
increase when affected individuals from multiplex fami-
lies are included in a study. However, analysis of such data
presents statistical and computational challenges.

We have developed a new test, the MQLS, which is ap-
plicable to association studies with completely general
combinations of family and case-control designs. For in-
stance, the MQLS allows cases to be related to controls, and
it is equally applicable to complex inbred pedigrees and
to simpler study designs consisting of unrelated individ-
uals and small outbred families. The MQLS distinguishes
between unaffected controls and controls of unknown
phenotype and can incorporate both into the same anal-
ysis. Furthermore, it makes use of phenotype data about
relatives who have missing genotype data at a given SNP,
where this information is used to optimize the weights
given to relatives with nonmissing data at the SNP. We
also extend the test to multiallelic markers. Our method
is computationally feasible to use for genomewide asso-
ciation studies with hundreds of thousands or millions of
SNPs. Our simulations indicate that the MQLS represents
an overall—and, in many cases, substantial—improve-
ment in power over competing methods for a broad range
of multigene trait models, while controlling type I error.
In a reanalysis of the GAW 14 COGA data, the MQLS de-
tected four SNPs with genomewide-significant association
to alcoholism, three of which had not been identified as
significant in previous analyses.

We suggest a simple diagnostic, based on only pheno-
type information, that determines whether the MQLS, WQLS,
and would be expected to give different results. ThisW 2xcorr

can allow one to avoid correcting for use of three different
tests in situations in which they are expected to give sim-
ilar results. In our simulation studies, when the diagnostic
indicated that the tests would give different results, the
MQLS was generally the most powerful. In the GAW 14
COGA data, the diagnostic indicated that the tests would
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Table 7. COGA Data Results

Marker Chromosome
Position

(cM) NCA NCO p

P

W 2xcorr
WQLS MQLS

tsc1750530 16 59.8297 644 145 .85 3.4e-4 1.6e-4 4.0e-7*
tsc0046696 18 104.665 459 118 .60 4.0e-1 7.6e-1 4.7e-7*
tsc0057290 18 33.9594 497 126 .71 5.8e-2 4.9e-2 5.2e-7*
tsc1177811 1 105.535 587 149 .68 2.7e-2 5.0e-2 5.9e-7*
tsc0571038 11 95.3968 581 122 .56 6.2e-7* 6.0e-5 4.5e-3
tsc1637642 5 95.4901 419 159 .84 3.5e-1 3.0e-1 3.2e-6
tsc1189131 19 68.94 478 121 .55 7.3e-1 1.7e-1 5.2e-6
tsc1519933 3 167.431 515 134 .64 9.5e-2 5.7e-2 8.0e-6
tsc0808295 6 47.1522 681 162 .76 9.4e-1 2.9e-1 8.2e-6
tsc1034745 14 41.7798 806 193 .74 8.8e-3 1.3e-5 5.3e-2
tsc0569292 11 6.78451 455 127 .74 5.9e-1 4.3e-1 1.3e-5
tsc0175005 3 158.199 594 152 .82 1.5e-2 2.9e-2 1.7e-5
tsc0784937 14 45.6372 561 127 .60 6.1e-1 6.8e-1 2.2e-5
tsc0768481 13 56.4194 568 138 .76 1.3e-1 3.3e-1 3.4e-5
tsc1687605 10 115.265 517 126 .75 2.6e-3 2.3e-1 3.8e-5

NOTE.—SNPs with an associated for at least one of the three tests are reported.�5P ! 4.0 # 10
The chromosome, the name of the marker, the position of the marker on the chromosome, the
number of genotypes available in cases ( ) and controls ( ), and the major-allele frequencyN NCA CO

in the case-control sample as a whole (p) are displayed. An asterisk (*) denotes genomewide
significance after Bonferroni correction.

give different results, and, indeed, this was the case with
the MQLS, WQLS, and identifying 4, 0, and 1 significantW 2xcorr

markers, respectively, where the marker identified by
was not among those identified by MQLS. (In this case,W 2xcorr

the Bonferroni correction took into account the three dif-
ferent tests as well as the number of SNPs tested.) In our
simulations, a diagnostic result of 11 in absolute value in
either cases or controls corresponded to a noticeable
power difference between the tests, but, with larger sample
sizes, a smaller diagnostic result might still correspond to
a substantial power difference.

We have developed a modified version of the CC-QLS
software program3 that outputs the results of our new MQLS

test for each SNP, as well as the results of the previously
proposed3 and WQLS tests. The source code will beW 2xcorr

available (see M.S.M.’s Web page).
In the simulations and data analysis, we focus on in-

clusion of small-to-moderate–size outbred families in case-
control association studies. However, it is important to
note that the MQLS is equally applicable to case-control
association testing in founder populations, provided that
the genealogy is known. Founder populations—for ex-
ample, the Tasmanian population17 and the Hutterites18—
are of interest for the mapping of complex traits for var-
ious reasons, including (1) avoidance of the problems of
unknown population substructure and (2) the expectation
that there would be fewer risk alleles involved in complex
disorders in founder populations than in diverse conti-
nental populations. The MQLS is computationally feasible,
even in a founder population as complicated as the Hut-
terites, among whom many of the individuals are related
through multiple lines of descent and exact likelihood
calculation is not feasible.18

We have examined the question of whether to use prior
or posterior kinship coefficients in calculating the weights
for WQLS and MQLS and the variances for , WQLS, andW 2xcorr

MQLS. We recommend that prior kinship coefficients al-
ways be used in calculating the weights; otherwise, the
theoretical justification for the statistics might not hold,
and they could be badly behaved. In calculating the var-
iance, we found no difference in the results obtained for
small-to-moderate–size pedigrees with the two different
types of kinship coefficients. Therefore, we recommend
prior kinship coefficients for that calculation also, because
they are much faster and simpler to compute. For large
pedigrees, posterior kinship coefficients are unfeasible to
obtain exactly, so it is somewhat academic to debate which
is better. Nevertheless, on the basis of our simulations, we
can say that, for a design consisting of a small number of
large pedigrees, if one is willing to detect a signal that is
driven by a combination of linkage and association, then
one should obtain higher power with prior kinship co-
efficients, whereas, if one wants to correct for a known
linkage signal to obtain a pure association test, then better
type I error properties would be obtained with posterior
kinship coefficients. (It is reasonable that these differences
should disappear with multiple small-to-moderate–size
pedigrees, because, if there is linkage but no association,
then different alleles would tend to be associated with the
trait in different pedigrees.)

Use of the MQLS requires specification of a constant k in
the test statistic. We emphasize that the test is valid for
any value of k. To optimize power, we recommend that k
be set to the best available estimate of the population
prevalence of the trait. Our simulation studies suggest that
the power of the test is very robust to the choice of k.
When k was misspecified within a factor of 3 or 4 of the
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true prevalence, there was little or no loss of power in our
simulations.
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Appendix A

Extension of MQLS to Multiallelic Case

We extend the MQLS procedure to test for association between a trait and a multiallelic marker. Extensions of the
and WQLS tests to multiallelic markers have been given elsewhere.3 Suppose there are a allelic types at the marker,W 2xcorr

and let be an vector, where and (the number of alleles of type i1TY p (Y ,…,Y ) [(a � 1)n] Y p (Y ,…,Y ) Y p #1 a�1 i i1 in ij 2

that individual j has). Let denote the allele-frequency distribution at the marker in the general pop-Tp p (p ,…,p )1 a�1

ulation, where is the frequency of allelic type i, and . Define to be the vector ofT Tp 1 0 1 p ! 1 r p (r ,…,r ) (a � 1)i 1 a�1

expected changes in allele frequencies for a case randomly sampled from the population. Then the mean model for
the MQLS in the multiallelic case is , where is the Kronecker product (see, e.g., the workEY p m p p � 1 � r � (F A) �N,N∪M

of Schott7[p253]), and 1 is a vector of 1s of length n; that is

n�m

EY p m p p � r 2f A ,�ij ij i i j,k k
kp1

where we constrain

n�m

0 ! p � r 2f A ! 1�i i j,k kkp1

for all , . Under the null hypothesis of no association between the marker and the trait, we have1 � i � a � 1 1 � j � n
, where 0 is a zero vector of length . Let denote an matrix with th entry 1r p 0 (a � 1) F (a � 1)(a � 1) (i,j) F p p (1 �ij i2

if and if . Note that, under the null hypothesis of no association and no linkage, and when1p ) i p j F p � p p i ( ji ij i j2

the pedigree founders are drawn from a population in HWE under the null hypothesis, . The MQLS testVar (Y) p F � F

statistic for the multiallelic case is

a�1 a�1

�1 T �1 Tˆ ˆ ˆM p (F ) (Y � m ) aG a (Y � m ) ,��QLS ik k 0k i 0i
kp1 ip1

where a and G are as defined for equations (5) and (6) and is the entry of evaluated at�1 �1ˆ ˆ(F ) (i,k) F p p p pik 0

, where is the maximum quasi-likelihood estimate of p when , or equivalently, the BLUE of pTˆ ˆ ˆ(p ,…,p ) p r p 001 0a�1 0

based on everyone, which previous work8 has shown to be for each i. Under the null hypothesis,T �1 �1 T �1p̂ p (1 F 1) 1 F Y0i i

the MQLS statistic follows a x2 distribution with df (asymptotically, under regularity conditions).a � 1

Appendix B

Connection between MZ Twins and Invertibility of F

We prove that is invertible if and only if the set N does not include both members of any MZ twin pair. BecauseF

S is a covariance matrix, it must be symmetric and positive semidefinite and is invertible if and only if it is positive
definite. inherits these properties. Note that S and hence is positive definite if and only if there is no linearF F

combination , , such that . This is because , and if and onlyT n T T T Tc Y c � R ' {0} Pr (c Y p 0) p 1 Var (c Y) p c Sc Var (c Y) p 0
if . If N includes i and j who are MZ twins, then , and is not invertible. SupposeTPr (c Y p 0) p 1 Pr (Y � Y p 0) p 1 Fi j

is not invertible. Then there must be some individual i in N such that can be written as a linear combination ofF Yi

, , , where is Y excluding the ith element. Consider the situation in which everyT n�1Y Pr (Y p d Y ) p 1 d � R Y�i i �i �i

individual in is heterozygous at the binary marker, which has positive probability for . Then, if i is notN ' {i} 0 ! p ! 1
MZ twin to anyone in , it is possible for i to have any genotype, and so it cannot be true that TN ' {i} Pr (Y p d Y ) pi �i

. Thus, implies that i has an MZ twin in .T1 Pr (Y p d Y ) p 1 N ' {i}i �i
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Appendix C

Derivation of MQLS Mean Model

We show that, under a two-allele disease model, for an arbitrary set of possibly related outbred individuals, the ratio

∗m � pi
∗m � pa

(given in the “Development and Justification of the MQLS Test” section) tends to

n�m

2f A ,� ij jjp1

as the effect size (or differences among penetrance probabilities) tend to zero. Throughout, we condition on the pattern
of missing phenotype information. Consider a two-allele disease model with penetrance probabilities k, , andk � c2

for individuals who have 2, 1, or 0 alleles of type 1, respectively, where and , with atk � c k � 1 � c � k k � 1 � c � k3 2 3

least one of and nonzero. (Note that, as and tend to zero, the population prevalence will tend to k.) Underc c c c K2 3 2 3 p

this model, we have

p(1 � p)[�c (1 � 2p) � c (1 � p)]2 3∗m � p p E(Y FA p 1) � p p .a i i k � (1 � p)[�2c p � c (1 � p)]2 3

Furthermore, we can express

∗m � p p E(Y FA) � pi i

�pP(A) � � sP(Y p s) � P(Y FY p s)P(AFY)i �i i
s�{0,.5,1} Y�ip , (C1)

P(A)

where A is the entire phenotype vector, denotes , denotes , and denotesY (Y ,…Y ,Y … ,Y ) Y (Y ,…,Y ) Y�i 1 i�1 i�1 n�m �1 2 n�m �(n�m)

, where denote the true (unobserved) genotype values for individuals . As(Y ,…,Y ) Y ,…Y n � 1,…,n � m c1 n�m�1 n�1 n�m 2

and approach 0, we have the expansionsc3

n�m1n n 2c uP(A) p k (1 � k) 1 � [2c p(1 � p) � c (1 � p) ] A � o(c ) � o(c )�2 3 j 2 3{ }k jp1

and

n nc uP(Y FY p s)P(AFY) p k (1 � k)� �i i
Y�i

c c c c2 2 3 3# 1 � [P(Y FY p s)( n � n � n � n )] � o(c ) � o(c ) , (C2)� �i i .5,u .5,c 0,u 0,c 2 3{ }1 � k k 1 � k kY�i

where is the number of affected, is the number of unaffected, is the number of individuals ofn n n � m � n � nc u c u

unknown phenotype in the study, is the number of affected individuals having a Y value of v (regardless of whethern ,cv

Y is actually observed or is missing in the study), and, similarly, is the number of unaffected individuals having an ,uv

Y value of v. Note that, for example,

n�m

�kn p 1 1 ,�.5,u Y p.5 A pj j 1�k
jp1

so

n�m n�m

�k �kP(Y FY p s)n p 1 P(Y FY p s)1 p 1 P(Y p .5FY p s) ,� � � ��i i .5,u A p �i i Y p.5 A p j ij j j1�k 1�k
Y jp1 Y jp1�i �i
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where can be calculated in terms of the relationship between the pair of individuals (i,j), withoutP(Y p .5FY p s)j i

having to consider multiple individuals jointly. Applying a similar argument to the other terms in equation (C2) and
reorganizing terms, we can obtain

n nc usP(Y p s) P(Y FY p s)P(AFY) p k (1 � k)� �i �i i
s�{0,.5,1} Y�i

n�m n�mc c2 3# E(Y ) � A E(Y FY p .5)P(Y p .5) � A E(Y FY p 0)P(Y p 0) � o(c ) � o(c ) .� �i j i j j j i j j 2 3[ ]k kjp1 jp1

Plugging into equation (C1) and noting that, for a pair of outbred individuals (i,j),

2E(Y FY p 0)P(Y p 0) p p(1 � p) (1 � 2f )i j j i,j

and

E(Y FY p .5)P(Y p .5) p p(1 � p)[2p � 2f (1 � 2p)] ,i j j i,j

we obtain

1∗ n �1 nc um � p p E(Y FA) � p p k (1 � k) 2p(1 � p){i i P(A)

n�m

[ ]# c (1 � p) � c (1 � 2p) A f � o(c ) � o(c ) .}�3 2 j ij 2 3
jp1

Then, plugging in the derived expressions for and , and letting and tend to 0, we get∗m � p P(A) c ca 2 3

n�m∗m � pilim p 2f A .� ij j∗m � p jp1c ,c r0 a2 3

If we let r represent the quantity , then this leads to our model .n�m∗ ∗m � p m p p � r� 2f Aa i ij jjp1

Appendix D

Details of MQLS Power Improvement Diagnostic

Recall that the test statistics , WQLS, and MQLS each have the form , where ,T �1 TW S [Var (S)] S S p V Y V p2x 0corr

, and can be viewed as the total weight given by the test statistic to individual i, withT(V ,…V ,…V ) V1 i n i

w wtest,i null,iV p � .i T T(w 1) (w 1)test null

Here, . Note that, by construction, for each test statistic. To measure the difference inn1ˆ ˆ ¯S p p � p V p � V p 0test null in ip1

weights between a pair of statistics, say and MQLS, for case and control individuals, we proposeW 2xcorr

1 T�w(W ,M ,case) p (B � B ) (B � B )2 2 2x QLS x M x Mcorr corr QLS corr QLSn � 1c

and

1 T�w(W ,M ,control) p (C � C ) (C � C ) ,2 2 2x QLS x M x Mcorr corr QLS corr QLSn � n � 1c
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where, for each statistic, the corresponding B is a vector of length n with ith component

n 1 Vc c,i iB p ,i T1 Vc

which is normalized by the mean total weight among cases if i is a case and is 0 if i is a control. Similarly, for eachVi

statistic, the corresponding C is a vector of length n with ith component

(n � n )(1 � 1 )Vc c,i i ,T(1 � 1 ) Vc

which is normalized by the mean total weight among controls if i is a control and is 0 if i is a case. The defini-Vi

tions of the ws for any other pair of statistics are analogous. Note that and , so thatB p 1 C p 1 � 12 2x c x ccorr corr

reduces to the absolute value of the coefficient of variation of among cases, and, similarly,w(W ,M ,case) V2x QLS Mcorr QLS

, , and reduce to the absolute values of the coefficients ofw(W ,M ,control) w(W ,W ,case) w(W ,W ,control)2 2 2x QLS x QLS x QLScorr corr corr

variation of among controls, among cases, and among controls, respectively, where the coefficient ofV V VM W WQLS QLS QLS

variation is the SD divided by the mean. In the situation in which there is a group of permutations of theG n � m
individuals such that (1) every element of preserves genotyped/missing status; (2) every element of preserves A;G G
(3) every element of preserves ; (4) for every pair of genotyped case individuals i and j, there is a permutationG FN,N∪M

in that maps i to j; and (5) for every pair of genotyped control individuals k and l, there is a permutation in thatG G
maps k to l, then the coefficients of variation for the total weights of the cases and for the total weights of the controls
are both equal to 0 for the MQLS and the WQLS statistics, and these two statistics are equivalent to the test. ForW 2xcorr

example, these conditions hold, at a marker with no missing genotypes, if the cases are affected sib pairs and the
controls are unaffected unrelated individuals.

Web Resources

The URLs for data presented herein are as follows:

Affymetrix, https://www.affymetrix.com/analysis/netaffx/index
.affx (for NetAffx information on the location of SNPs in table
7 and identification of genes that are in close proximity to the
SNPs)

EntrezGene, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD
psearch&DBpgene (for information about genes that are close
to SNPs in table 7)

M.S.M.’s Web page, http://www.stat.uchicago.edu/˜mcpeek/
software/index.html (for the source code described in the text)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for alcohol dependence, FBXO15, VAPA,
CYP2C18, and HTR2A)
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